Personal Information
Name
HIROKAWA Nobutaka
Section
Section II, Seventh Subsection
Date of Election
2004/12/13
Speciality
Molecular Cell Biology
Selected Bibliography
- Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94: 129-142, 1982.
- Hirokawa, N., K. K. Pfister, H. Yorifuji, M. C. Wagner, S. T. Brady, and G. S. Bloom. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56: 867-878. 1989.(Cover)
- Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. Kinesin family in murine central nervous system. J Cell Biol 119: 1287-1296. 1992.
- Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79: 1209-1220. 1994.
- Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81: 769-780. 1995. (Cover)
- Kikkawa, M., T. Ishikawa, T. Wakabayashi, and N. Hirokawa. Three-dimensional structure of the kinesin head-microtubule complex. Nature 376: 274-277. 1995.
- Terada, S., T. Nakata, A. C. Peterson, and N. Hirokawa. Visualization of slow axonal transport in vivo. Science 273: 784-788. 1996.
- Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519-526, 1998. (Cover)
- Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93: 1147-1158, 1998.
- Nonaka, S., Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, and N. Hirokawa. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95: 829-837, 1998.
- Okada, Y., and N. Hirokawa. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science 283: 1152-1157, 1999.
- Kikkawa, M., Y. Okada, and N. Hirokawa. 15 Angstrom Resolution Model of the Monomeric Kinesin Motor, KIF1A. Cell 100: 241-252, 2000.
- Setou, M., T. Nakagawa, D. H. Seog, and N. Hirokawa. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796-1802, 2000. (Cover)
- Terada, S., M. Kinjo, and N. Hirokawa. Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103: 141-155, 2000.
- Nakagawa, T., M. Setou, D. Seog, K. Ogasawara, N. Dohmae, K. Takio, and N. Hirokawa. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103: 569-581, 2000.
- Kikkawa, M., E. P. Sablin, Y. Okada, H. Yajima, R. J. Fletterick, and N. Hirokawa. Switch-based mechanism of kinesin motors. Nature (Article)411: 439-445, 2001.
- Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105: 587-597, 2001.(Cover)
- Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa. All kinesin superfamily protein, KIF, genes in mouse and human. PNAS 98: 7004-7011, 2001.
- Setou, M., D.-H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417: 83-87, 2002.
- Wong, R. W.-C., M. Setou, J. Teng, Y. Takei, and N. Hirokawa. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. PNAS 99: 14500-14505, 2002.
- Homma, N., Y. Takei, Y. Tanaka, T. Nakata, S. Terada, M. Kikkawa, Y. Noda, and N. Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114: 229-239, 2003.
- Okada, Y., H. Higuchi, and N. Hirokawa. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424: 574-577, 2003.
- Nakata, T. and N. Hirokawa. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol 162: 1045-1055, 2003.
- Ogawa, T., R. Nitta, Y. Okada, and N. Hirokawa. A common mechanism for microtubule destabilizers – M-type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116: 591-602, 2004.
- Nitta, R., M. Kikkawa, Y. Okada, and N. Hirokawa. KIF1A alternately uses two loops to bind microtubules. Science 305: 678-683, 2004.
- Kanai, Y., N. Dohmae, and N. Hirokawa. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43: 513-525, 2004.
- Hirokawa, N. and R. Takemura. Molecular motors and mechanisms of directional transport in neurons. Nature Rev Neurosci 6:201-214, 2005.
- Teng J., T. Rai, Y. Tanaka, Y. Takei, T. Nakata, M. Hirasawa, A. B. Kulkarni, and N. Hirokawa. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biol 7: 474-482, 2005.
- Tanaka, Y., Y. Okada, and N. Hirokawa. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature (Article)435:172-177, 2005.
- Okada, Y., S. Takeda, Y. Tanaka, J.-C. I. Belmonte and N. Hirokawa. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633-644, 2005.
- Hirokawa, N., Y. Tanaka, Y. Okada and S. Takeda. Nodal flow and the generation of left-right asymmetry. Cell 125: 33-45, 2006.
- Midorikawa R., Y. Takei, and N. Hirokawa. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125: 371-383, 2006.
- Guillaud, L., R. Wong and N. Hirokawa. Disruption of KIF17-Mint1 interaction by CamKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biol 10: 19-29, 2008.
- Nitta, R., Y. Okada and N. Hirokawa. Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nature Str & Mol Biol 15 : 1067-1075, 2008.
- Niwa, S., Y. Tanaka and N. Hirokawa. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biol 11: 1269-1276, 2008.
- Hirokawa, N., Y. Noda, Y. Tanaka, and S. Niwa. Kinesin superfamily motor proteins and intracellular transport. Nature Revs Mol Cell Biol 10: 682-696, 2009. (Cover)
- Zhou R., S. Niwa, N. Homma, Y. Takei, and N. Hirokawa. KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139: 802-813, 2009.
- Hirokawa, N., R. Nitta and Y. Okada. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nature Rev Mol Cell Biol 10: 877-884, 2009.(Cover)
- Hirokawa, N., S. Niwa and Y. Tanaka. Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease. Neuron 68: 610-638, 2010.
- Yin, X., Y. Takei, M. A. Kido and N. Hirokawa. Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron 70: 310-325, 2011. DOI 10.1016/j.neuron.2011.02.049
- Nakata, T., S. Niwa, Y. Okada, F. Perez, and N. Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin–rich microtubules underlies polarized vesicle transport. J Cell Biol 194:245-255, 2011. DOI: 10.1083/jcb.201104034
- Kondo, M., Y. Takei, and N. Hirokawa. Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron 73: 743-757, 2012. DOI 10.1016/j.neuron.2011.12.020
- Niwa, S., K. Nakajima, H.Miki, Y. Minato, D. Wang, and N. Hirokawa. KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23: 1167-1175, 2012. doi.org/10.1016/j.devcel.2012.10.016.
- Nakajima, K., X. Yin, Y. Takei, D.-H. Seog, N. Homma, N. Hirokawa. Molecular motor KIF5A is essential for GABAA receptor transport, and KIF5A deletion causes epilepsy. Neuron 76: 945-961, 2012. doi.org/10.1016/j.neuron.2012.10.012.
- Zhou, R., S. Niwa, L. Guillaud, Y. Tong, and N. Hirokawa. A molecular motor, KIF13A, controls anxiety by transporting the serotonin type 1A receptor. Cell Rep 3: 509-519, 2013. http://dx.doi.org/10.1016/j.celrep.2013.01.014.
- Kanai, Y., D. Wang and N. Hirokawa. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. J Cell Biol 204: 395–408, 2014. doi:10.1083/jcb.201309066.
- Yang, W., Y. Tanaka, M. Bundo, and N. Hirokawa. Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells. Dev Cell 31: 202–214, 2014. DOI: http://dx.doi.org/10.1016/j.devcel.2014.08.028
- Ichinose, S., T. Ogawa, and N. Hirokawa. Mechanism of Activity-dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87: 1022–1035, 2015. DOI:10.1016/j.neuron.2015.08.008
- Tanaka, Y., S. Niwa, M. Dong, A. Farkhondeh, L. Wang, R. Zhou, and N. Hirokawa. The molecular motor KIF1A transports the TrkA neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90: 1215–1229, 2016. http://dx.doi.org/10.1016/j.neuron.2016.05.002.
- Wang, D., R. Nitta, M. Morikawa, H. Yajima, S. Inoue, H. Shigematsu, M. Kikkawa, and N. Hirokawa. Motility and microtubule depolymerization mechanisms of the kinesin-8 motor, KIF19A. eLife 2016 https://elifesciences.org/content/5/e18101
- Homma, N., R. Zhou, M. I. Naseer, A. G Chaudhary, M. H Al-Qahtani, and N. Hirokawa. KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring. eLife 2018;7:e30935. https://doi.org/10.7554/eLife.30935.
- Wang, L., Y. Tanaka, D. Wang, M. Morikawa, R. Zhou, N. Homma, Y. Miyamoto, and N. Hirokawa. The atypical kinesin KIF26A facilitates termination of nociceptive responses by sequestering focal adhesion kinase. Cell Rep 11: 2894-2907, 2018. doi: 10.1016/j.celrep.2018.05.075..
- Morikawa, Mo., Y. Tanaka, H-S. Cho, M. Yoshihara, and N. Hirokawa. The molecular motor KIF21B mediates synaptic plasticity and fear extinction by terminating Rac1 activation. Cell Rep 23: 3864-3877, 2018. Https://doi.org/10.1016/j.celrep.2018.05.089
- Fang, Xu. H. Takahashi, Y. Tanaka, S. Ichinose, S. Niwa, M.P.Wicklund, and N. Hirokawa. KIF1Bβ mutations detected in hereditary neuropathy impair IGF1R transport and axon growth. J Cell Biol 217: 3480-3496, 2018. https://doi.org/10.1083/jcb.201801085.
- Shima, T*., Ma. Morikawa*, J. Kaneshiro, T. Kambara, S. Kamimura, T. Yagi, H. Iwamoto, S. Uemura, H. Shigematsu, M. Shirouzu, T. Ichimura, T. M. Watanabe, R. Nitta, Y. Okada, and N. Hirokawa. Kinesin-binding–triggered conformation switching of microtubules contributes to polarized transport. J Cell Biol 217: 4164–4183, 2018.http://doi.org/10.1083/jcb.201711178 * equal contribution
- Alsabban, AH.*, Mo. Morikawa*, Y. Tanaka, Y. Takei, and N. Hirokawa. Kinesin Kif3b mutation reduces NMDAR subunit NR2A trafficking and causes schizophrenia-like phenotypes in mice. EMBO J Nov 20:e101090. 2019 doi: 10.15252/embj.2018101090. * equal contribution
- Iwata, S.,Mo. Morikawa, Y. Takei, and N. Hirokawa. An activity-dependent local transport regulation via degeneration and synthesis of KIF17 underlying cognitive flexibility. Science Advs.2020; 6:eabc8355(published on line: 16 Dec 2020)
- Yoshihara, S.,X. Jiang, Mo. Morikawa,-----------and N. Hirokawa. Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Rep 35, 108971, 2021 https://doi.org/10.1016/j. celrep.2021. 108971
- Morikawa,M. , N. Jerath , T. Ogawa , Mo. Morikawa , Y. Tanaka , M. E. Shy , S. Zuchner and N. Hirokawa. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. EMBO J 2022 41:e108899 https://doi.org/10.15252/embj.2021108899
- Wang, S.*, Y. Tanaka*, Y. Xu, S. Takeda, and N. Hirokawa. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 57: 2273-2289,2022 * equal contribution (Cover)https://doi.org/10.1016/j.devcel.2022.09.007
- Wan, Y., Mo. Morikawa, M. Morikawa, S. Iwata, M.I. Naseer, A.G. Chaudhary, Y. Tanaka, and N. Hirokawa. KIF4 regulates neuronal morphology and seizure susceptibility via the PARP1 signaling pathway. J Cell Biol 222: e202208108, 2023https://doi.org/10.1083/jcb.2022208108
- Tanaka, Y.,A. Morozumi, and N.Hirokawa. Nodal flow transfers polycystin to determine mouse left-right asymmetry. Dev Cell 58:1447-1461, 2023 https://doi.org/10.1016/j.devcel.2023.06.002